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This paper has three main objectives. First, it aims to show that basic general 
conservation principles for viscous flow can be formulated in terms of diffusion and 
convection. Secondly, it aims to show that three scalar conservation principles suffice 
to provide a method for characterizing swirling axisymmetric flows in terms of axial 
and boundary production of the conserved quantities. Thirdly, it aims to exemplify 
these two objectives by giving a complete specification of the axial causes for swirl-free 
conically similar flow in otherwise free space. 

This series of papers, overall, is concerned with the analysis and characterization 
of swirling conically similar flows in terms of the singularities that generate the 
conserved quantities. In  conically similar flows there is no natural lengthscale, and 
the sole parameters governing the flow are provided by the strengths of the 
singularities that cause the flow. These are required to have the same dimensions as 
a power of the kinematic viscosity v. The axisymmetric flow generated by uniform 
production of swirl angular momentum per unit mass along a half-axis at a constant 
rate provides a simple example. 

In  conically similar flow the three conservation principles for axisymmetric flow 
provide a sixth-order non-autonomous system of two ordinary differential equations 
governing the flow. Here, in Part 1, these equations are derived for the general case 
of swirling flow, and are shown to reduce to a fourth-order system when swirl is absent. 
The two scalar conservation principles describing swirl-free flow are used to classify 
the basic axial causes for this system. 

Part 2 analyses these basic exact one-parameter swirl-free families of solutions, and 
Part 3 extends the analysis to the remaining one-parameter family of swirling flows 
associated with uniform swirl angular-momentum production on a half-axis. Each 
of the families is characterized by a single independent cause, and two of them provide 
new non-trivial solutions of the Navier-Stokes equations. The effects of nonlinear 
coupling of these basic one-parameter causes and of conically similar distributions 
over conical boundaries will be examined in later papers. 

1. Introduction 
The motion of an incompressible homogeneous viscous fluid under conservative 

body forces can be simply described in terms of two basic conservation principles - 
conservation of volume and conservation of whirl. The amount of whirl in a fixed 
region V a t  time t is defined to be the vector quantity r given by 

r ( V , t )  = o dV. (1.1)  
V 
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Here w(r , t ) ,  its volume density a t  time t ,  is the vorticity field, which is related to 
the velocity field q(r,  t )  by 

curlq = w .  (1.2) 

Locally, conservation of volume requires 

div q = 0, 
whilst Helmholtz’s equation 

am 
-+div[qw-wq-uVw] at = 0 (1.4) 

specifies conservation of whirl by relating the time rate of change of its vector volume 
density to a tensor flux which contains both convective and diffusive terms, written 
in a coordinate-free dyadic form. Here v is the (constant) kinematic viscosity. 

Whirl is generated in the fluid by the action of non-conservative forces. Usually 
i t  is produced by the action of skin friction at  rigid boundaries, but wider 
circumstances can be contemplated in which it is produced at singular points, lines 
and surfaces by arbitrary external causes. Conservation equations can also be 
formulated for both the first and second moment of whirl about a chosen origin 0, 
and these provide a means of characterizing higher-order whirl-producing singularities. 
In this approach, which we describe as the kinematic approach, the dynamical role 
of the pressure field p ( r ,  1 )  is relegated to the equations of motion, which provide its 
gradient field in terms of q and w and the constant density p. 

The induced (Biot-Savart) velocity field, generated by the vorticity field a, is 
determined by the appropriate particular solution of (1.2). To this must be added 
the potential-flow field generated by the volume-producing singularities. Outside 
these singularities this flow field satisfies both (1.3) and the homogeneous form of (1.2) 
with w zero. The problem is nonlinear in that the convective terms contained in the 
whirl flux tensor depend, in part, upon the induced velocity field caused by the whirl 
distribution. 

In  axisymmetric flow the above basic vector conservation principles simplify to 
provide a set of three governing scalar conservation principles for volume, ring 
circulation and swirl angular momentum (Pillow 1970). The volume densities of these 
latter two quantities are denoted by 1/2n and pT respectively, and are simply related 
to azimuthal components of the vorticity and velocity fields. 

In cylindrical polar coordinates (x ,u,$)  with x measured along the axis of 
symmetry, u perpendicular to it and $ the azimuthal angle (so that the tangent 
vectors to the coordinate lines (9,6,3) form a right-handed orthonormal triad with 
natural basis vectors (9,6, uJ)), the velocity q and the vorticity w can be written 
in the form 

T 
q = u+-J, U (1.5) 

w = a + a@. (1.6) 

Here the axial half-plane components of the velocity and vorticity are u and 51 
respectively, and 2nT is the swirl circulation. Also, 

curl u = a@, (1.7) 

whilst div u = 0, (1.8) 

and div a = 0. (1.9) 
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For a ring R, formed by rotating its axial half-plane cross-section C about the axis 
of symmetry, Stokes' theorem requires that 

(1.10) 

The last line integral describes the circulation in an axial half-plane around the 
boundary aC of the cross-section. This circulation, which we define as ring circulation, 
is independent of 9, and (1.10) reveals that it may be regarded as being uniformly 
distributed with respect to 4 around the ring. The volume density of ring circulation 
is 1/27t. Equation (1.8) shows that the axial half-plane velocity u may be described 
in terms of a scalar flux function, which in this case is the stream function $. The 
vector potential for u is thus ($/u) 3: 

(1.11) 

The increment in 27t$ along any axial half-plane arc then measures the volume 
discharge per unit time from left to right across the surface generated by the rotation 
of that arc about the axis of symmetry. Similarly, in accord with (1.9), the flux 
function for the axial half-plane vorticity D is T, and 

(1.12) 

The axial, half-plane, flow field u is completely determined by the stream function 
$. The relationship between $ and 1 is obtained by combining (1.7) with (1.11) to 
yield 

curl curl ($3) = u l ~ ,  (1.13) 

or, in scalar form, 
1 

$,, -- $v i- $-,-, = - u=1. 
cr 

(1.14) 

A knowledge of the distribution of volume-producing singularities allows the velocity 
field q and the stream function $ to be reconstructed from the scalar fields 1 and T 
by adding the potential flow of the volume production to the ring-circulation-induced 
velocity field determined by (1.7) and (1.8). 

The conservation equations for ring circulation and swirl angular momentum in 
axisymmetric flow are formulated in $2, and a detailed interpretation of the 
individual terms in their flux vectors is given there. Under steady-state conditions, 
both these flux vectors are solenoidal and scalar flux functions can again be 
introduced to  measure the discharge per unit time of these conserved quantities across 
axisymmetric surfaces. 

Conically similar viscous flows are a simple, special class of axisymmetric flows 
in which the sole parameters characterizing the flow causes are of the same dimensions 
as powers of v. Since no lengthscale is then available, the radial dependence of 
physical fields can be directly determined by dimensional analysis in spherical polar 
coordinates ( r , p ,  9). Here (r, 8) are polar coordinates in an axial half-plane, p = cos 0 
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and 8 = 0 on the positive x-axis. In particular, for steady-state flow, the field 
quantities $, 1 and T can be written in the form 

$ = Vrf(P), (1.15) 

(1.16) 

T = VT(P) ,  (1.17) 

V 
1 = <g(P), r 

wheref, g and r are dimensionless. 
For such $ and 1, (1.14), when rewritten in polar coordinates, requires that 

f” = -9. (1.18) 

Because of the known radial dependences, the axisymmetric scalar conservation 
principles now reduce to  a set of two coupled nonlinear ordinary differential equations 
for f and 7, as shown in $3. The system of governing equations is a sixth-order, 
non-autonomous one. It still features all the physically different terms which 
contribute to  the flux vectors of the conserved quantities. Conically similar viscous 
flows thus effectively illustrate the axisymmetric conservation principles, and are 
used throughout this set of papers to demonstrate their central importance. 

The viewpoint of the present series of papers is that, since axisymmetric flows are 
described fully by three scalar conservation principles, it  should be possible to specify 
conically similar viscous flows in terms of the conically similar production of these 
three basic conserved quantities on conical boundaries or on the axis of the flow. Since 
most flows with conical boundaries may be continued to the axis of symmetry, the 
simplest approach is to  specify first only the axial causes. This present paper 
describes such a characterization in $4 for the case of swirl-free flows. Part 2 examines 
the flows corresponding to  the individual one-parameter swirl-free axial causes. 
Part 3 generalizes the characterization to  flows with swirl, and details the remaining 
fundamental flow whose cause is a uniform distribution of swirl angular-momentum 
sources on a half-axis. 

Useful reviews of known swirl-free conically similar viscous flows have been given, 
for example, by Whitham (1963), Berker (1963) and Yatseyev (1950). However, 
although these flows are relevant to  our later studies of nonlinear coupling, as yet, 
no systematic characterization has become available. 

In  swirling conically similar flow the three basic scalar conservation principles 
specify a total of six independent axial causes, combinations of which are sufficient 
to  characterize conically similar viscous flows without boundaries. Two new flows, 
one with swirl, the other swirl-free, are uncovered by this approach. I n  the swirling 
example ($4 of Part 3) large swirl angular-momentum production on a half-axis leads 
to  a well-developed internal boundary layer in the form of a radial jet in a thin conical 
layer separating swirl-free and constant-swirl-circulation regions. I n  the new swirl-free 
flow ($4 of Part 2) physical production of a second moment of ring circulation along 
the axis of symmetry produces opposed axial jets. When directed inwards, these erupt 
and discharge into a plane radial jet. Outwardly directed jets result in induced outer 
potential flow towards the axis of symmetry. 

The flow produced by a point source of axial momentum (equivalent to production 
of a second moment of ring circulation) (Landau 1943; Squire 1951) and the flow 
associated with a uniform half-line source of mass naturally arise afresh in the 
classification proposed and complete the basic set of fundamental flows. 
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2. Kinematic Conservation principles for axisymmetric viscous flow 
Three basic kinematic conservation principles suffice to describe axisymmetric 

incompressible viscous flow (Pillow 1970). They are presented here in somewhat 
modified form, but still concern the conservation of volume, ring (axial half-plane) 
circulation, and kinematic swirl angular momentum (with volume density T). 

Vector conservation principles with antisymmetric flux tensors are an abundant 
source of scalar conservation principles, since contravariant components in arbitrary 
curvilinear coordinate systems are conserved (Paul1 1982). The flux tensor for whirl 
in (1.4) can be rendered antisymmetric by the addition of a zero-divergence flux tensor 

(2.1 ) -+div W = 0, where W =  qw-wq-vVo+v(Vw)t .  

v(Vw)t; 
ao 
at 

(Here ( V O ) ~  denotes the transpose of Vo.) This is the form of the conservation 
principle for whirl adopted in this series of papers. 

One scalar conservation principle derived from (2.1) results from taking the natural 
azimuthal contravariant component. This gives the conserved volume density for ring 
circulation : 

1=0*vq5=0- - 3  = ( V x u ) *  (3). (2.2) (: ) 
As a consequence of the antisymmetric flux tensor for whirl in (2 .1 ) ,  conservation 
of ring circulation is thus governed by the flux vector W.Vq5. The flux vector for ring 
circulation is then J / 2 x ,  and is related to the ring-circulation volume density 1/2x 

-+div J = -4xvZ&(a), 

by 

(2.3) 
az 
at 

where 

and 
Vb 

Here q, is the velocity field of a viscosity-dependent line source on the axis of 
symmetry with uniform line density 2xu, and &(a) is the two-dimensional delta 
function concentrated on the axis of symmetry, with a = c7b. The singularity on the 
right-hand side of (2.3) appears in addition to the physical causes of the flow, and 
results from 

In swirl-free flow, where T = 0, q = u, Sa = 0 and w = 1 ~ 4 ,  only three processes 
contribute to the flux vector J/2x, and its description is pleasingly simple: 

divq, = 2xv&(a). (2.6) 

1 1 
2x 2x 
- J = - [lu-221q0- v Wl]. 

The first term lu in J represents the convective flux of positive (anticlockwise when 
viewed from the $-direction) ring circulation by the actual axial half-plane velocity 
field u. The last term - v V1 in J describes the diffusive flux of ring circulation down 
the gradient of its density. The second term - Zlq, describes a uniform convective 
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suction of ring circulation towards the axis of symmetry arising from an apparent 
uniform line sink of volume there d strength 4nv per unit length. This viscosity- 
dependent fictitious convection field is not present in the actual field of flow, but (2.7) 
shows that ring circulation is indeed convected as if i t  were. This process (which may 
be conveniently described as viscous convection) sweeps ring circulation towards the 
axis of symmetry, where i t  is destroyed by the singular terms on the right-hand side 
of (2.3). The term - 4 ~ v l S ( a )  describes a line sink of ring circulation of variable 
strength along the axis, which, in the absence of physical causes and boundaries, is 
just sufficient to remove the ring circulation brought there by viscous convection. 

In  swirling flow a further process associated with distributed production of ring 
circulation by the swirl velocity gradient comes into play. There is rotation and 
extension of the vortex tubes, and the flux vector may be put into the form 

The new term - Tw/u2 in J describes the effect of transporting whirl by the swirl 
velocity. I n  this interpretation, vortex filaments are split into their axial half-plane 
and azimuthal components (o = Q+ u@). Azimuthal transport of whirl, as described 
by - TQ/u2, leads in general to production of ring circulation as a result of rotation 
of the axial half-plane vorticity out of that plane, whilst the azimuthal transport of 
ring circulation, which results in possible extension of ring vortices, is accounted for 
by - T@/u.  Collectively, the two processes give rise to a flux - Tala2  for clockwise 
ring circulation down the vortex tubes. This of course follows directly from the term 
-wq displayed in the whirl flux tensor of (2.1), where i t  describes the flux of vector 
whirl up the vortex tubes (Paull 1982), just as the flux of whirl down the stream tubes 
is described by qw. (The dyad -wq provides a flux description of the localized rate 
of production of whirl (with volume density w*Vq) associated with the rotation and 
stretching of vortex tubes which would otherwise appear on the right-hand side of 

It should also be noted that the convective term lq in J n o w  contains an azimuthal 
component which is exactly cancelled by the azimuthal component of the vortex-tube 
flux. It therefore follows that J always lies entirely in the axial half-plane, and may 
be written in the form 

(2.1 1.1 

T Q  
J=  lu-- --2lq,-~Vl,  

u u  

which extends the swirl-free description given in (2.7). The new term -TQ/u2 
describes a flux of clockwise ring circulation in the axial half-plane along the lines 
of constant swirl circulation (T) ,  which are the flux lines of the axial half-plane 
vorticity field a. 

The above kinematic interpretation of the flux vector in the ring-circulation 
conservation equation (2.3) provides a useful and fully consistent alternative to the 
one suggested by Pillow (1970), where ( -  T2/c4) R replaces the term - TQ/u2 in J 
above. The new interpretation has the advantage that there is no flux of ring 
circulation in constant-swirl-circulation flows, though both interpretations need to 
be modified by subtraction of an axial flux in solid-body rotation. 

The axial half-plane component of the conservation-of-whirl equation (2.1) in the 
vector form 

(2.10) 
aa 
- + v* [qQ - wu - v {VQ - (VQ)+}] = 0 
at 



Conically similar viscous jlows. Part 1 333 

yields a further independent scalar conservation principle when swirl is present. Since 
the swirl circulation 2xT provides a flux function for the axial half-plane vorticity 
field Sa, changes in Tare related to displacements dr along arcs in the axial half-plane 
by 

dT = n * d r  x a3. (2.11) 

In the absence of swirl circulation on the x-axis, integration of (2.10) along any 
half-plane path starting from the origin (say) provides, after some manipulation, the 
governing conservation equation for a quantity whose volume density is T; 

(2.12) 
aT 
-+div at K = 0,  

where 
K =  Tu+2Tq0-vVT. (2.13) 

Equation (2.12), as noted by Pillow (1970), follows directly from the covariant swirl 
component of the momentum equation, since the azimuthal component of the 
gradient of the Bernoulli function B will be zero in axisymmetric flow if B is 
single-valued. (A multivalued B would describe swirl circulation production on the 
axis.) Here 

(2.14) 

p is the pressure excess over that at infinity and @ is the conservative body force 
potential per unit mass. 

In the scalar conservation principle (2.12), T plays the role of a volume density. 
Since pT is the swirl angular-momentum density, T itself will be called the kinematic 
swirl angular-momentum volume density. Again there are just three processes that 
contribute to the flux vector Kfor kinematic swirl angular momentum. The first term 
Tu in K represents a convective flux along the constant+ lines in an axial half-plane, 
whilst the third term - v VT describes the diffusive flux of kinematic swirl angular 
momentum down its density gradient. The second term 2Tqo is again a viscous 
fictitious convective flux, but now it is outwardly directed from the axis and arises 
from an apparent uniform line source of volume there of strength 4xv per unit length. 
In the absence of external causes, T is zero on the axis, and there is consequently 
no need for a singular source term on the right-hand side of (2.12) analogous to the 
sink term that appears in (2.3). Such a term 4xvT6(v) would be necessary, however, 
if angular momentum were supplied by couples distributed along the axis with 
constant line density pT. Indeed, the constant-T solution provides a simple example 
of how, in a viscous fluid, angular momentum is transmitted to infinity by viscous 
convection from a maintained potential-flow line vortex on the x-axis arising from 
the application of a uniform couple along this axis. 

If the steady Navier-Stokes equation in the form 

wxq+v(Vxo)+VB=O (2.15) 

is cross-multiplied with the identity tensor, it  follows that the flux tensor Wfor whirl 
is given by 

(2.16) 

Since 1 = o * V $ ,  the flux vector J/2n for ring circulation in steady flow must be given 

d 
(2.17) 
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I n  steady flow, away from the axis of symmetry, J is solenoidal and allows the 
introduction of a vector potential. Equation (2.17) shows that -Ba/u is a suitable 
vector potential and that the negative Bernoulli function - B/2x plays the role of 
a flux function for ring circulation. Apart from its dynamical role, B also has this 
kinematic role in that its decrease along any axial half-plane arc measures the rate 
of discharge of ring circulation (from left to  right) across the surface generated by 
rotation of the arc about the axis of symmetry. 

Similarly, since K is solenoidal in steady flow, it has a vector potential A g / u ,  and 

K = T u + ~ T ~ , - v V T = V X  -4 . (2.18) 

Again, the new function A plays the role of a flux function for kinematic swirl angular 
momentum. 

Each of the three conserved quantities, volume, ring circulation and kinematic swirl 
angular momentum, in axisymmetric flow can be generated independently of the 
others. Volume-producing singularities do not produce ring circulation or kinematic 
swirl angular momentum. This is one of the advantages of the kinematical approach 
over the dynamical one. I n  the conventional approach, conservation of axial 
momentum is used instead of conservation of ring circulation. Forces (i.e. sources of 
axial momentum) are required to  hold volume-producing singularities in place, and 
inevitably the strengths of the two causes are then linked. 

(t 1 

3. Conically similar viscous flow 
The ordinary differential equations governing conically similar viscous flow can be 

simply derived from the basic axisymmetric ones (1.13), (2.3) and (2.12) when they 
are cast in spherical polar form. Thus, away from the axis of symmetry, in steady 
flow 

and 

Here r2 = x 2 + a 2  and p = x / r .  
If the $-, I -  and T-fields are replaced in (3.1), (3.2) and (3.3) by their conically 

similar expressions vrf(,u), vg(p)/r3 and v7(p) respectively in accord with ( m i ) ,  
(1.16) and (1.17), then the following ordinary differential equations rcsult : 

g = - f ,  (3.4) 

(3.5) 

(3.6) 

Primes represent differentiation with respect to p. The relation (3.4) allows (3.5) to 
be integrated three times. The governing ordinary intcgrodiffercntial system is then 

(3.7) 

277’ 
fg’ + 3f’g - [( 1 -p2 )  9” - 4/49’] -- = 0, 

f7 ’ -  (1 -p2)  7” = 0. 

1 -p‘ 

(1 -p.”)f’ + 2pf- i f 2  = <$(/Au, 7 2 )  + Ap2 + Bp + c 
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(1 -p2) 7” -f7’ = 0, 
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(3.8) 

(3.9) 

and A, B and C are constants of integration. Analogous equations have previously 
been derived by Gol’dshtik (1960) and Serrin (1972) from the dynamical equations 
of motion. If their lead is followed, the expression for G(p, 72) may be integrated by 
parts three times and rewritten as 

(3.10) 

wherep E b l , p O ]  defines the region of flow. Equation (3.7) is of Riccati type and hence 
can also be partially linearized by the substitution 

h’ 
h ‘  

f=-2( l -p2)-  

The system of governing equations then becomes 

and 

where D anc. E are 
within a constant 
&velocity, where 

h@) = 0 [G@, 72) + Ap2 + Bp + C] 
2( I -p2)2 

h@) + 

(3.11) 

(3.12) 

(3.13) 

further constants of integration. The function ,&) is specified to 
multiple. It specifies a potential function #T for the transverse 

$ ,= -2~ lnh .  (3.14) 

The fractional gain in h(p )  along a meridional arc on any sphere centred on the origin 
describes an increase in #T which specifies the line integral of q along that arc (the 
transverse circulation). 

The flux function y2 for volume is vrf(p),  and its flux vector the velocity q is given 
by 

(3.15) 

For ring circulation, the flux function is - B/2x, where B is the Bernoulli function. 
For conically similar viscous flows, B must have the form 

V 2  
B = -/3@). 

r2 
(3.16) 

The steady Navier-Stokes equation (2.15) then yields 

77/ 
P’(P) = (l-f)s+l--ye (3.17) 

-W@) = [(I -P2)  sl’-fs. (3.18) 
and 

Equation (3.7) can be differentiated twice to give the alternative expression 

-2/3(p) = ( 2 - f ‘ ) f ’ - - A - G ( p , ~ ~ ) .  (3.19) 
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For kinematic swirl angular momentum, the flux function A has, the form 

A = v2rh(p). 
Equation (2.18) then gives 

and 
-A’@) = (2 -f) 7 

--h(p) = (1 -p2)  7’ + 2p-- f7 .  

The flux vector for kinematic swirl angular momentum is given by 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

4. Quantitative characterization of axial causes in swirl-free conically 
similar flow 

The basic conservation principles for volume and ring circulation developed in 52 
are used in this scction to  determine the individual strengths of the swirl-free axial 
causes of conically similar viscous flow. The ability to  describe the strengths of the 
basic singularities allows any particular combination of causes to be specified and 
investigated a t  will, and so provides a means of classifying and labelling swirl-free 
conically similar viscous flows in terms of the strengths of their constituent causes. 
Completeness of the fundamental set of swirl-free axial causes, within the class of 
solutions described by (1.15) and (1.16), is guaranteed by the determination of the 
three constants of integration in the governing Riccati equation (3.7) and the 
imposition of an integral condition on the flow. 

Creation of ring circulation on the axis calls for singular production of ring 
circulation. This is measured by the rate of production of the axial component of 
moment of whirl. It will be shown that the complete set of swirl-free causes on the 
axis is provided by two independent uniform half-line volume sources, one point 
source of the axial component of moment of whirl (axial momentum) and one 
antisymmetric distribution about the origin of sources of the axial component of 
moment of whirl (axial momentum) with line density inversely proportional to  x. The 
flows generated by each of the basic causes, listed above, are examined in Part  2. 

I n  swirl-free conically similar viscous flows the governing equations (3.7)-(3.9) 
reduce to 

(1 -p”,f’+2pf-&P = A p 2 + B p + C ,  (4.1) 

since the swirl circulation T is everywhere-zero. 
1 with line 

density strength M , ,  then conically similar flows are generated, since the constants 
M , ,  describe the volume emitted per unit time per unit length on each half-axis and 
have the dimensions of v. For such distributions, $ varies linearly with r on each 
half-axis, and (1.15) requires 

If volume sources are distributed uniformly along the half-axes p = 

M , ,  = T27tvf( & 1) .  (4.2) 
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Analytic solutions of (4.1) for which f approaches a constant as ,u+ & 1 must also 
fulfil the requirement (1 -p2) f' + 0 as ,u +. f 1. Hence, for finite M ,  - 

Consideration of the conically similar flow generated by ring-circulation production 
on the cone ,u = ,uo with area density inversely proportional to ra3 makes it clear that, 
in the limiting case as po + 1, the line density of ring-circulation production on ,u = 1 
must be infinite if non-trivial flows are to result. However, the line density of the 
second (a2) moment of ring circulation production is a finite quantity in this limit 
and will produce a conically similar flow if it varies inversely with x ,  since the strength 
of this line singularity then has the dimensions of u2. An even simpler conically similar 
flow results if the second (c2) moment of ring circulation is produced at the origin 
at a finite rate L per unit time. Such a cause may be regarded as the limit of 
axisymmetric ring-circulation production at the rate Q per unit time on the ring 
through (0, a,) as a,-+O, with L = Qai held finite. Again L has the dimensions of v2 
and provides a simple kinematic characterization of the point source of axial 
momentum and the conically similar flow associated with it by Landau (1943) and 
Squire (1951). 

This series of papers views conservation of ring circulation as the basic and simplest 
kinematic principle describing the axial half-plane distribution of the &component 
of the vorticity field. However, for the purpose of measuring the strengths of the axial 
ring-circulation singularities, it is evident that a a2 moment of the conservation 
principle for ring circulation needs to be developed. Conservation of the first moment 
of whirl provides such a principle. 

If the vector moment M, of whirl about the origin 0 in a fixed region V is defined 
as 

M,(V, t )  = ( r x m ) d V ,  (4.6) S" 
then a vector conservation equation can be formulated, which relates the volume 
density I x o of moment of whirl to a suitable tensor flux. When moment of whirl 
is generated on the axis in axisymmetric flow it is only its axial component that is 
of relevance. Generation of this axial component of moment of whirl is identical with 
generation of the second (a2) moment of ring circulation. A conservation principle 
for the axial component of moment of whirl has been formulated previously by Pillow 
(1970). It can be derived directly, after some manipulation, from the covariant 
azimuthal component of (2.1). For swirl-free flows, devoid of potential-flow causes, 
it  can be put in the form 

am 
- + div [m(u + 2q,) - v V m  + (2uu - (u u)  I) 21 = 0, 
at (4.7) 

where m is the volume density of the axial component of moment of whirl. Here 
m = a21 and 

u = U R + V 6 .  (4.8) 
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Equation (4.7) needs modification when, for instance, potcntial- flow causes alone are 
present, since i t  would call for a flux vector 

(u2 - w2) f + 2uva (4.9) 

when no ring circulation has been generated. As pointed out by Paull (1982), this 
anomaly may be removed by noting that, in potential flow, the flux vector (4.9) is 
solenoidal and so allows the flux vector 

(u; - v;) f + 2up wp 8, 

upf+vp8  
generated by the velocity field 

(4.10) 

of the volume-producing causes, to be subtracted from the flux vector in (4.7). 
Swirl-free conservation of the axial component of moment of whirl is then described 

am 
-+div at N = 0, (4.11) 
-~ 

where 

It should be noted that all terms in N now concern ring-circulation-dependent 
quantities. The quadratic velocity terms, in particular, now only contain contributions 
amounting to interactions between the ring-circulation and potential-flow fields or 
the ring-circulation field and itself; the decomposition 

u = up+u, (4.13) 

of the velocity field into its potential flow and ring-circulation-induced velocities 
demonstrates 

N = ( ~ + 2 q , )  m- v Vm+ (u2 - w 2 )  f + 2 ~ ~ 8 -  [(u: - w;) f+2uPvp 61. (4.12) 

N = a22(up + u ~ )  + 2a21q0 - v V(a21) + 2(uP U Z  -up v Z )  f 

+ ~ ( w , u ~ + u , v Z ) ~ +  ( U ~ - U ~ ) ~ + ~ U Z V ~ ~ .  (4.14) 

There are then no spurious potential-flow terms in the equation governing con- 
servation of the second moment of ring circulation. 

I n  conically similar viscous flow the flux vector N is given by 

where vrfp is the potential-flow stream function (fi = 0) arising from the volume- 
producing causes. 

The inverse-square radial dependence of N indicates that not only is the axial 
component of moment of whirl conserved overall, but that  the radial and transverse 
rates of discharge of N are separately conserved. There is no interchange between 
the two components. If N is rewritten as 

(4.16) 

the radial rate of discharge of the axial component of moment of whirl, in a thin 
conical annulus of p-width dp neighbouring p = p,,, depends solely upon the rate 
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-v2x'(po)dp at which it is being discharged into that region by the singularity 
generating it at the origin. Likewise, the transverse rate of discharge of the axial 
component of moment of whirl, in the thin spherical shell between r = ro and 
r = ro+dr, takes place in meridional planes along lines of longitude, and depends 
solely upon the rate 27cv2k/r0 per unit radial thickness at which it is being discharged 
into the spherical shell from one half-axis. The constant k characterizes the strength 
of this transverse flow, which originates from an antisymmetric distribution of the 
axial component of moment of whirl sources on the axis of symmetry. A flux function 
X for the axial component of moment of whirl is consequently given by 

X = v2[x,u) - k In r ] ,  (4.17) 

where 

In (4.17) a harmless artificial lengthscale has been introduced by taking X = 0 at 
r =  l , p =  1. 

The strength of the point source of the axial component of moment of whirl is given 
by the first term in (4.17), as 

L = 27rV2[X(-l)-~X(l)] 

5 
= 2m2 JY d5 [ (3 -f) (1 - 9 -1-f" if2 -f;> - (f2 -fp21' + 5{(f')2- ( f 4  . (4.19) 

The second term in (4.17) shows that the axial component of moment of whirl is 
emitted from the right half-axis of symmetry at the rate 

27cv2k/r (4.20) 

per unit length. The strength of this cause is thus characterized by 

K = 27cv2k, (4.21) 

which with the help of (4.1) and (4.15) can be rewritten as 

K = 2xv2[(C-A)+f,(l)f,(-1)1, (4.22) 

where, in order to match the potential-flow volume-producing causes, 

fJH) =f(kl) .  (4.23) 

The relations (4.22), (4.4) and (4.5) serve to relate the integration constants A, B 
and C to the three physical constants M-, and K, which describe the strengths 
of the two uniform half-line sources of volume and the antisymmetric distribution 
of sources of axial component of moment of whirl. The problem of finding the solution 
f(p) of (4.1) is then well-posed, since the further constant of integration involved is 
specified by the integral condition (4.19) in terms of the physical constant L, which 
describes the strength of the point source of axial component of moment of whirl at 
the origin 0. 

A list summarizing this quantitative characterization of swirl-free conically similar 
viscous flows in terms of axial causes appears in table 1. 
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